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The macroscopic motion of a materlal continuous medium, interacting with an
electromagnetic fleld, is lnvestigated. The results obtained have a univer-
sal character, the properties of the medium not beilng specified in detail.
Possible interaction of the moving and deforming medium with an electromag-
netlic fleld is taken into account. This interaction is provoked by the pre-
sence of electric currents in the medium as well as by the effects of its
electrical polarization and magnetization.

Formulas for the ponderomotive force given by various authors differ in
nature, and are applicable only to separate, particular cases. This situa-
tion 1s related to the possiblility of different definitions of the momentum
energy tensor for the electromagnetic fileld and to complications in the phys-
ical problem of the propertles of the medium.

To describe the electromagnetic field in the medlium, the following elec~-

tromagnetic quantities are introduced:
E, H D=E 4 4nP, B=H 4+ 4nM, j p. )
Here, p, 1s the density of the electric charge distribution, the other
quantitles are the usual ones [1]. These quantities, valid for an inertial
coordinate system, satisfy the (not closed) system of equations of Maxwell
[1].

As 18 well known [2], to write the transformed Maxwell equations for an
arbitrary, curvilinear, moving coordinate system, it is convenlent to make
use of the tensor form of Maxwell's equations, written in four-dimensional
form in pseudo-Euclidean Minkowski space., In all of Minkowskl space, the met-
ric may be defined by the quadratic form

ds? = — dz'? — dz2*  dg*° + c2df? = gi]d:cidzj (2)
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Here, ¢ 1s the velocity of light.

The set of real values of the varlables x!, x*, x®, x*= t generate a
pseudo-Euclidean space, defined in an inertial Carteslan reference system,
As 1s well known, every transformation
&=z WLy Ryt =) 3)
for which the equality
2 2 3 , ;
ds? = — dyl® — dy?" — dy® + dt” = gidy'dy’ (4)
is fulfilled is linear, and is called a Lorentz transformation [3].

The three-dimensional vectors (1) may be defined in an arbitrary inertial
coordinate system. To obtain the transformation formulas of the vectors (1)
in a four-dimensional Lorentz transformation, it 1s necessary to introduce
two antisymmetric four-dimensional tensors of second oeder, F and y ,
whose components in inertial Cartesian systems are defined by the matrices (*)

0 B3 —B? ¢E,
—B3 0 Bl ¢E;
F = “ Fi]' “ = B2 —B1 0 c¢Es
-——CEI -—CEz —CEa 0
)
0 H3  —H? Dy
—H?3 0 H D,
H=|Hy|= B —m 0 C.Da\
—-CD1 —CDg ——-ch 0
Maxwell's equations may be written in the forms
rot E=—2% divB =0 or Vi Fi 4 VFy 4 ViF = 0 (6)
. oD . 4m
I‘OtH=4-CT—‘J+%—E, div D = 4mnp, or V,,Hikz? s (D)
Here Il = —]‘1; 12 = —]'2, [3 = —]'3, 14 = pec2 are the covariant com-

ponents of the four-dimensional electric current vector.

For Lorentz transformatlons and for arbitrary transformations on the spa-
tial coordinates alone, the vectors B, B and K, D can be made to corre-
spond to the antisymmetric tensors F;, and §g,,

*) Here, and in what follows, in general expressions and in summations,
Latin indices 1¢,f,%,1... take values 1,2,3,4, while Greek indlces q«,B,y,..
take values 1,2,3,.

Furthermore, in operating with three-dimensional of four-dimensional ten-
sors, raising or lowering of indices in accomplished with the help of the
metric tensors g*aB or g, pr defined by the quadratic forms

dit =g »da®dzP, dst=g, doide’ = —di* + 2g, dx®dt 4 g,, dt?
8ap ij 4 a4
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The conversion from the components of these vectors in the x%, : system
to the analogous components in the @, ¢’ system is obtained from general
rules for the transformation of the -tensor componenets of Fyy and g, ..
Unlike the vectors B, D, K, B, the tensors F and ¥ , their components
F,, and g,,, and the tensor equations (6) and (7) have meaning in any non-
inertial system. Thus, the tensor equations (6) and (7) express invarlant
physical rules, independent of the cholce of coordinate system, which in
inertial coordinate systems are Maxwell's equations,

In noninertial coordinate systems, for example, in & coordinate system
obtained from a given inertial one by means of a Galllean transformation in
the Newtonian sense (without & Lorentz contraction of length and time), the
transformed coordinates in the matrices (5) can also be regarded as certain
corresponding vectors B*, ¥* and M, D*. However, these vectors can be
regarded as the vectors B, B and H, D only in an approximate sense for
small velocltles of a moving system.

To determine the ponderomotive forces, it 1s necessary to introduce the
momentym energy tensor with components ‘SX for the electromagnetic fleld.
The general formulas for the components of the four-dimensional ponderomotive
force in an arbltrary coordinate system have the form

Fi= — 7S (®)

The laws for the variation of the momentum and energy for the system com~
posed of the field plus the material medlium may be expressed in the form

vaik = F; + Gi» or Vi (Tik + Siz‘) == Gi (9)

Here, @, are the components of the four-dlmensional external force vector
In many cases, it may be assumed that G,= O . The components of the momen-
tum energy tensor of the medium and the fleld as one system are represented

by the sum & g "
1 =Ty + 55

In the general case, the momentum energy tensor of the medium, 72?
characterizes the physlcal properties and internal interactions in the medium;
this tensor also has an electromagnetic nature, since the internal stresses
in the material medium are determined either by collisions of particles or
direct interaction of atoms and molecules at dlstances which are large in
comparison with the dimensions of the elementary particles of which they are
composed., As 1s well known, in both cases these microscopic interactions
are of an electromagnetic nature. According to the appropriate deflnition
of the model of the contlnuous medium, the components 72? are connected
with the metric tensor, with the four-dimensional velocity vector of points
of the medium, with the thermodynamic funciicns of state, and with the char~
acteristics of the dissipative mechanisms in the medium (*).

*) The tensor T and its components 7j¥ can be regarded as functions of
constant and variable tensors and scalar parameters, defining the structure,
physical state, and internal processes for infinitesimal particles.
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The decomposition of the total momentum energy tensor ]}k into the sum
Tﬁ:%—‘gf_ for the material medium and the field is directly connected with
the decomposition of the total electromagnetic force acting on a small por-
tion of the medlum — a body force and a surface force. The internal surface
stresses in the medium are defined by the components of the tensor 1TE, and
the electromagnetic body forces by the components of the vector F@ = ——‘Vmgf

It is evident that, for a unique determination of the tensor If, which
is essential on physical grounds, the tensors Tf:andA9$ may be determlned
differently, and this 1s essentially connected with the different methods
for decomposing a single electromagnetic system into two interacting electro-
magnetlc systems.

3
It 1s essentlal that after choosing S%? for the field, the tensor I
for the material medium be defined with this choilce of .Sf: taken into account
in a unique way.

From what has been sald above, it is evident thai it is possible to have
the well-known arbitrariness in the specification of SQ?; thls circumstance
has been the basis of many discussions and for the dsrivatlon of a variety
of formulas by different authors [1 and 3 to 5] for the ponderomotive forces,
this question frequently being considered quite without regard to the choice
of the tensor T';® for the material medlium.

Let us investigate the formula for the ponderomotive force when the ten-
sor .Sf in an arbitrary coordinate system is defined by Minkowski's tensor
formula

K 1 mk 1 ok mn
SE=— L [F,m-H — 3 O H ] (10)
Minkowski's tensor is not symmetrical in the general case, l.e.

Sij =8
Making use of Equation (10) and the conditions of antisymmetry for }?ﬁ
and H;; , we obtain on the basls of Equations (6) and (7) (*)
1 1 mk mk
F,'_ = 'C—FmiIm_ ER [kaV,H - H Vika] (11)
The tensor equations (6), (7) and Formulas (10) and (11) are valid in any
moving and general curvilinear coordinate system.

Together with the tensors F and g , we can introduce another antisym-
metric tensor P , defined by

0 M3 M3 Py
1 M3 0 M P,
P= E(F — H), ”Pij | = M2 M 0 —cPy | (12)
CPI CPz CP3 0 l

*) In deriving (11), use was made of the fact that, on the basis of (6),
k 1 k
H™F oy = 5 HF gy
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In an inertial coordinate system, the tensor P 18 formed with the help
of the three-dimensional electric polarization vector P (P;, P,, P,;) and the
magnetization vector M (M?, M2 MS3). wWith the help of the tensor p ,
Equation (11) may be written in the form

Fi= 2 Foil™ o L (F a7 P™ — PG F ) (13)

The first term in Equations (11) and (13) defines the Lorentz force, the
second term becomes zero in the absence of polarization or magnetization,
the symbols Y7i denote covarlant, four-dimensional derivatives.

If the reference system is inertial, then 1n connection with the tensors
F and P we can introduce a system of three-dimensional vectors {(1). In
an inertial coordinate system, Equation (13) may be written in the form
1 . opP 0B M
«x —L—..- _ o el e e il
F*= p,Eq + — [j X Bl, + [Paﬂ Eo. + M2 Baxa] (14)
where the four-dimensional contravariant force components F* correspond to
spatial three-dimensional covarlant force components. Equation (14) pre-

serves 1ts form in going from a Cartesian to a curvilinear spatlal coordinate
system.

From Equation (13), in an inertial coordinate system, we obtain (*) for
t = 4 ’
B Eg PP 4 B M"
it = Fy = E.j+ B2k 4 B, 20 25 TR )
Equations (14%) and (15) are directly useful for defining the ponderomotive
forces by means of the vector system (1) when the material medium is at rest
or 1n a state of inertial translational mo:ion. In the latter case, 1if the
vectors B, 2, B and M are defined in an inertial reference system tled
to the body, then in Equation (15) the term B - § gives the Joule heat,
the term EB(?PB / dt + BBGMB/ Ot may be considered to be the macroscopic
inflow of energy from the field to the body, due to the microscopic mecha-
nisms of polarization and magnetization of the body, while the gquantity
1/, (EBPB + BBMB) is conveniently included in the internal energy of the
material medlum.

It 1s easy to see that, in Equations (14) in the second term and every-
where in (15), the components of the vector B can be replaced by the com~
ponents of the vector H .

If the body is accelerating and is deforming, then Equation (13), which
is valid in any cocrdinate system, may be used; in particular, thls is true
also for a Lagrangian coordinate system moving with the body, in which the

*) Equation (15) 1s obtained as a consequence of the vector identity
= 5%
H-.Sb '_‘4n ExH

wnich is valld for various definitions of the momentum energy tensor for the
field, in particular, for that of Minkowski as well as that of Abraham.
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three-dimensional velocities of all points of the medium are always equal to
zero (*).

Within speclal relativity theory, space-time forms a four-dimensiocnal,
pseudo-Euclidean space; therefore, we can take as inertial reference system
¥ a Cartesian coordinate system xa xa xﬂ = L for which the metric is
given by Equation (2).

In a coordinate system 1;(§H g2, g3, §4:=tA) moving with the body, we

have for the metric PR
ds? = g",dEdE’, g4 (89 (16)
Since the coordinates x! and g’ are taken in one and the same pseudo-
Euclidean space, there exist functional relations (**)

zt = 2 (8, &, B 17) (17)
which define the law of motion in the continuum under consideration.

For the components of the four-dimensional veloclty, we have the following
in system x ([8)

dz* dz* (8t at 1 < (87:1\2
o - {22 — | had 4 _ (% — 2 il
us = ( ds)za ( at )aa 63)2,1 ? u (as)aa ch_ 72 v ; \ (%} )
in system [

~

g B85 _ IRV 1 (19)

ds ’ = g T 3=
§ ds }/g 4
With the help of (17) and (18), we can write for the componentsof @7,

Formulas o 3 axYaxY—F 2( 8t) ot
=— > — 5+ {— o
- F AR U0 (8£“)w
3
A A oxY dxY 5 ot at
£ aa=™8 4a_[__ ZE«;W'}'C a_i“](mrka 20)
\ v=1
. AN Y AN
§ u= :a (5?:) +c (5?:)2“ = (¢ —v )<5?:>Ea
=1

For every point M(gl,ga,ga)of the moving contlnuum 7 at every moment
of time ¢, it 1s possible to choose a proper inertlal coordinate system f,
so that the three-dimensional velocity v of the point ¥ 1in system x Dbe
equal to zero. In system X , the acceleration of the point ¥ and the
veloclty of neighboring points of system 7 are different from zero, 1n
general,

To simplify the derivation of the invariant scalar or tensor relations,
use can be made of the freedom in the choice of system 7 at a given moment

*) S8Specification of the three-dimensional veloclty field as a function of
time in some fixed coordinate system makes it possible to individualize polnts
of the continuum and thus to introduce a Lagrangian coordinate system.

*#) According to (17), the relation between x%,t and gd,¢~ 1s recipro-
cally unique in finite space.
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of time ¢** and the proper system ¥ for the point ¥ at the moment t-*

ad

t

Along with the coordinates €% and :°, we can introduce the Lagrangian
varlables n“,n4::t'“, (1n general nonholonomic), determined by relations
of the form

(4) dn®=A% (€%, ") de®,  dr" =By (g% t")dEP + B, 1Y) dt”

wq§re ‘4Ba and BB are components of some tensor and vector, for which
|A%150" and B# O . In the case of holonomic coordinates, the conditions
of integrability are fulfilled, and therefore relations {4) reduce to finite

relations
(B) "lazﬂa (Elv ‘22’ EB)’ vh =" (Ea) tA)

Correspond;gg to the vector base BzA, 8¢" 1n the variables g‘ is the
vector base®, ", 8" 1n the quasi-coordinates n*. It 1s evident that these
bases are related by Formulas

3" == Ag*9,"" + Bga,' ", 9" = Ba,"

If ¢" and ¢’" are defined as proper times in systems £* and n*,
respectively, then the second of relations {(p) has the form

(©) Uh=t" - f(E EL EF) ot B=1
The function f(g“) gilves the reference origin for the time on different
world lines; 1if 7y = const , then BB =0 .
In nonholonomic coordinates, relations (C) are replaced by Equation
dt'“=dt" + Bdg®

»*
In both holonomic and nonholonomic cases, the quadratic form g.gdﬂadﬂﬂ
defines a three-dimensional metric, which 1is non-Euclidean in general.

The choice of [ and X may be made so that

ga=Fr for " =1"* Vi—%:dt = dt" (21)

This means that, for ¢"= ¢t°*, in all three-dimensional space, the spatial
coordinates g“ coincide with Carteslan coordinates x@ in K , and that 4¢
is the increment of proper time in k , while dt¢t" 1s the Infinitesimal
increment of proper time at points of system 1 . At point y¥ we have p=0
and, consequently, the increments of proper time in ¥ and in 7 are iden-
tical for point ¥ .

From Equations (21) 1t follows that in all three-dimensional space the
equations
ax™ ot oz at 1
w=d Gao=0 G= (= yrmm @
oeP /1~ ¢ /ga O Jga Y1 —o¥c
are valid for t"= t**, and in addition, at point ¥ , the following equa-
tions are valid:

=t (_‘:’_‘_) — O
¢ - at” g - agﬂaa\' -
(23)
P> 2 " o, #x* 2™ G*
2¢~aEB  a1aEB  aEB  apB ! a~E = e T A~
\ince at~9EP  owoE® EP  aE
(an) _8 1, o
0™ [pa — Ot" Vi) a1~k
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v* = v, denotes components in system K of the three-dimensional velocity
vector of a polnt of the medium.

From (20) and (22) it follows that, for t*= ¢**, Equations
A —1 (@ =18) N Yy
¢ “‘*={0 ey’ FeT T Vi—aa’
are valild, with g“4a = () at point ¥ .

g =2 (24)

Spatlal coordinates in the inertlal system x and in the noninertial
system I coincide only for t°“= t"%; at subsequent times, accelerations
and deformations cause coordinate lines in system 7 to displace and deform
relative to system X .

We shall denote by 9, o' and a“i,a“i, respectively, the covariant and
contravariant base vectors in systems X and [ .

Let us consider an arbltrary tensor fleld w» .
ijk k ~ij ~ ~ Az
N =N pppf ... =N Y-2" @k ..
and the gradient of the tensor ¥ .

grad N = ‘21—\/;31 =(1V13Al
ox aE

= V" N% 9" p k.. 0"
For t~= t**, due to conditions (22) and (23), we have at point ¥ Equa-
tions 9; — 3Ai and ' = aAl,therefore
oNti .
k... A ]
— =V N (25)

e

§ o et
N% =N ",

In going from point ¥ to other points, or for t“# t**, Equations (25)
may be violated.

In comparing various physical equations in their components, use can be
made of the coordinate systems [ and x . In equations containing deriva-
tives of components of tensors with respect to coordinates or to time, use
can be made of Equatiorn (25), and the derivatives for different components
in different systems applied, depending in which system the components under
consideration are specifiled.

In mumber of cases, it is convenient to specify and conslder the components
of the momentum energy tensor of the material medium in a co-moving coordil-
nate system [ , while at the same time giving the components of the momen-
tum energy tensor J;k of the electromagnetic fileld in an inertial coordinate
system K , '

In making use of the proper system X , the three-dimensional vector cha-
racteristics of the electromagnetic field and the corresponding equations of
Maxwell in vector form can be introduced. At the same time, the three-
dimensional vectors introduced for system X can be considered in the spa-
tial coordinates of 1 . Thus, the system x may be regarded as a supple-
mentary method for determining the ordinary vector characteristics of the
electromagnetic field. If, for the electromagnetic field, we limit ourselves
to the tensors F, §, P and § , then all the tensors may be investigated
only in a co-moving coordinate system. In this case, introduction of the
inertial system x may be essential for determining the components of the
tensor ¢;, (Equations (20)) and of the four-dimensional veloclty vector.
Both methoés are essential, generally speaking, for determining the momentum
energy tensors of the electromagnetic fleld and the material medium.
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For the ponderomotive forces and for the inflow of energy: in the general
case of motlon of a deformable medium, use can be made of Equations (1%#) and
(15), in which the components of the vectors g£%,5%,r%,#* are defined 1in a
spatial coordinate system of the inertial system x . In Equations {14) and
(15), coordinate 1ines 1n system )¢ may be taken to be curvilinear, In
using the vectors E %a,, P °© Ba, B %, M* aa in a co-moving coordinate
system 1 , Equations (14) preserve thelr form (%),

If the quantilties E a, P a, B a, M * are introduced in Equation (15),
then it is necessary to take into account Equatilons [6]

aP* P L e o .
(W“\J = (Z), 4 P + )

S b3

Here ¢ 45 and o op=1/y(00s /0P — Ovp/0E®) are the components of the
three-dimensional rate of deformation and vorticity tensors, defined for a
three-dimensional veloclty vector v of points travelling with system 7
relatlve to the corresponding proper system g .

On the basis of (26), Equation (16) takes the form
K [ ~ ~f3 Al ~ ~ A
F4=-—V,,S4. = E-j+(E"*P"P £ B""M"") (¢ ap + 0" ap) +

, A paB N B
aM ~F a8 E"pP"" 4+ B M
+ B, P + B oo — = 5 (27)
The scalar energy equation for the system consisting of the materilal
medium and the fleld in an arbitrary coordinate system may be written in the

form W TE 4 WS = u'Gy = d*q/ edt” (28)

Here, d*g/cdt” 1s the external, macroscopic inflow of energy into unit
area per unit proper time, due to interactions with other bodles not inclu-
ded in the tensors le and S,k ;  1in many cases we can usually assume that
a*q/at = 0 .

In Equation ( 28), in accordance with (19), (2%) and (25}, the term
V“angfal is taken in a co-moving coordinate system 7 , and the terms VkS;'f
and V; T; 4= (6T¢4/at" Yz =(8T;4/5t“)5a in the inertial, proper coordinate
system x ; thus we obtain

6T4

+ VLT = Fy 4 drq/dt” (29)

where F, is defined by Equation (27).

*) This derivation follows from the equations for transforming the vectors
(1) when the system X 1s introduced at each point of the medium and from
Equations I‘ _o Equation (14) is preserved also for transformations of

the form n* ——'q (E', £%, E3) and " =t".
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To transform and evaluate the left-hand side of (29), we note that, at
the point ¥ , for which p®=0 at ¢*= ¢**, Equations (20), (22) and (23)
result in Equations

6gABY — 0 agA4ﬁ —_ avB agA‘M (30)
g® ’ " g’ o™
98" ap - vy 92, ) T L 9g 44 _ 0
at” FE™ GEB ! at” at”~ ! a~
Using (30), we find that, for Chelstoffel symbols,
I‘A;tk—_—i(;Ail[%_ﬂ__;_aiﬁl_ag%jﬁ}
Do 8&"{ ' aa] aE,l
Equations
NA K __ ~d nd ~a ov* _ ava 148 avB (43 4
Phe=Te=Tru =0, D= jm=gn, Tu=ge G0
are valid. On the basls of (31), we have
\vA A GT;‘Q Mpaa N ap N di 7~ div aBavAa
al 4 = P + 7,05 1 /T ;= divQ -I- 4 VYV —D Eh
A A 3 ~ ;
(Q=13%"0, p*" = —1"*F) (32)
Further rearrangement of Equation (2.9) can be accomplished by using
Equation d . o
id + pdivv =0 (33)

dt
where p 1s the density, determined in the co~-moving coordinate system from

the relation — N «
pdro = dmo (dTo = Vg* dg, dts ds, g" (&a, t") =| gagl)

Here, 47, 1s the substantial volume 1n the co-moving system, am, 1s the
rest mass, gag are the components of the three-dimensional metric tensor.

We now define

1 .
T8 + 5 (EP® + BgM®) = oU (34)

With (27), (32), (33) and (34), we can write (29) in the form

af y
() =[5 L+ B g B2ox05 3 B | o,
EU.

~ dm"B ~ am™E 1 . 1 . 1 .
4+ E S 4+ By 4+~ E.j— —divQ -} = (d*q/dt")  (35)
dt ot p p p
where mn* = P%*/ p,me = Me /p, are the components of the three-dimensional
vectors of the moments of polarization and magnetizatlon, per unit rest mass.

Equation (35 ) is called the equation of heat iInflux, and 1is valid for
irreversible as well as reversible processes. The quantity ¢ can be
regarded, 1n a co-moving reference system, as the local specific internal
energy per unit rest mass of the material medium. In the general case, the
full internal energy of finite volumes of the medium, due to internal macro-
scoplc interactions in the material medium, cannot be represented 1n the
form of an integral of U . The specific internal energy U , the specific
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entropy § and the absolute temperature 7T (*), defined above in a co-
moving coordinate system, may be regarded as scalar quantities, just as
dmy = pd7, . Together with the quantity v , 1t 1s convenlent to use, the
specific free energy F , deflned by Equation pFp =y — 75 .

With the help of the function F , Equation (35) can be rewritten in the

form af |
(dF);n = —SdT + (%- — 5 (Bt + Bym) g*f 4

: L 0
4 E%nP 4 B“mB] (€ap -+ Wqp)dt™ -+
+E“adn““+B“admA°‘—-;—dindt‘“+%E.jth+~:)—d*q~—TdS (36)

In what follows, we shall consider all the quantities appearing in the
heat influx equation (36) as three-dimensional scalars,vectors, and tensors.

The vectors E and J are taken in the proper coordlnate system K ,
and therefore the energy flux p 'EB+J represents the Joule heat.

The energy flux — p~'div Qt¢" can be represented in the form of a sum of inflow
of heat energy and nonheat energy; this inflow 1s eXpressed as the fiux of
the vector Qdt™ = T ,dt" on the boundary of a small particle. It is
evident that the vector Q , Jjust as the components ]’Af, can depend only
on the seme defining quantities as the momentum energy tensor 1’"3.

Energy flux which is independent of the momentum energy tensor, for exam-
ple, radiant energy flux, is included in the term p *g’g

Equation (36) 1s satisfied for all possible processes in the medium
oceurring due to the actlion of arbiltrary external forces, for arbitrary
changes of the determining parameters. Making use of this, Bquation (36)
may be used as the basis for deriving the equations of state and the kinetic
equations which are satisfiled for any process. These physical relations can
be obtained when the free energy F and the entropy increment dS=g4,5+4,S
are given as functions of the specifled quantities d.S 1s the inflow of
entropy across the surface bounding the volume of a small particle).

In constructing specific models of material media, 1t 1is quite conslstent
to assume the absence of connecting relations between geometric or kinematic
quantities, differential or any other relations, different from their direct
definltion., An example of-such a connection could be the condition of incom-
pressibility, which, however, can be applied in some cases. The existence
of supplementary relations leads to restrictions in the laws of motion which
are independent of external conditions or of the effect of externsal body or
surface forces on the boundarles of finite volumes or small particles of the
medlum,

We shall investigate Equation (36) urider the assumption that the free
energy F can be considered to be a function of the following parameters:

~ ~ A A ~ -~ ~ ag/‘av agg*(
T, g%p & ap 7% m'% Vign e, Vigm %, o R (37

*) In what follows, we shall consider reversible processes or only those
irreversible processes for which the concept of temperature and free energy
is meaningful,
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where g% 1s the three-dimensionsl metric tensor of some initial state.
Since V'pg",y = 0, and
goaY Ap. A
0EB _goapr ﬂY'_'gOpLYF };B
therefore, in the arguments of the function F , we can take 08 .,/ 9EP
as variable quantitles with time and g°,5 and 0g°. / JEP as constants. We
assume, in addition,

Qfdt” = R*Fdn® + N Pdm™* + A P*dg oy + Q" Pdt” (38)
where the coefficients RA;{%, NA&L?, AP gna Q7P depend on the para-
meters (37) and, in the general case, on certain other quantities (*).

v Aﬁgom*{ =

We can supplement system (37) with other parameters and include certain
derivatives with respect to time. In these, more general cases, the develop-
ment of a subsequent theory 1s also possible, with complications.

It is not difficult to verify Equations

dVs n* = Vgdn* 4 nvdl\g

where 5 5 s
a a 1 g 1 g
a0 = — T 3g™ dgn, + + g0 (4 I i D
g,
Vpdgay = YBYL — dgapT§ — dgp T

With Equations (37) to (39), Equation (36) can be written in the form
@dT +9*Beqadt” + Q%a,pdt” + yadn® 4 x,dm* 4 0,8 dVpne+

(40)
i .

+ 9,PdVame -+ mﬂ“*d—g;%-%vﬁg“dt“ + 2 jarr + T —Tds =0
where @, P*F, Q2B 4, %% OF 4B and D7 are defined by Formulas

(41)

aB y phe oF 2 0 — oF 1
—§ =0 D20 o AN VO N N [ . oF
ar T 2 P o Voo P Vs (98,401 0EM) I+

A (E.PY 4 BM) gr<b — L (E*PP - E°P* + B°M® + B°M") +
+%_ VA [(RBA___ R)\ﬁ) ne 4+ (Ral__Rla) P & (RBG + Rﬂﬂ) n)\]_i_
5 Al — N e 4 (N — N P - (N 4 N m?) —

*) 1In what follows, the components of &ll vectors and tensors are taken in
a co-moving system of coordinates. For simplicity, the symbol « , denoting
components in the co-moving system, is dropped. FPurther arguments and equa-
tions will be simplified 1f, instead of the system of deflning parameters

, we take the system o ° °
(37) v T, g% &ip W m Voan®, Vogmt, Vopgay

Here, VE is the symbol for the covarilant derivative in the three-dimensional
space of the initial state. Below, the case of saturated magnetization, for
which |m| = const , is not considered. Inclusion of saturation will not
Introduce essential difficultiles.
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— sz? % Va;’;waﬁ + cégé
PP — phe  FEPP EFP* L B*MP  BPM® =200
Ey= 2 = VaRE + o, R =— pava:na + po:
By =t VNS ey NS =—p av"’;ﬂ + o0
AP = __pgwg”_f’/z_&%__ 4 UR™® — RPY) n® 4 (%P = RP%) 2 4 (R 4+ R*)aP |
n (VB — NBY) m® 4 (N®B — NPy ¥ 4 (NY® 4 N*Y) mP] e

4

The tensor Y** 1is symmetric and the tensor Q™" g antisymmetric. The
components AP*Y ang MBav are symmetric with respect to the last two indi-
ces.

If 1t is assumed that the inflows of energy _p*IVBQBdt“ and " ld*q
correspond to the Inflow of heat energy, then for reversible and for certain
irreversible processes (for example, with heat conductivity and radiation
included), Equation
TdS =~ E-jdt + —d*q — —V,QPdt = dgt® (42)
will be satisfied. P P ?

If, moreover, it 1s admitted that the quantities @, P8, QB ¥, x,, 0,°
¥,8 and @Bz¥ defined by Equations:(41), do not depend on derivatives with
respect to time (*) or on the defining parameters (37 ), then, from Equa’ion
(40), and in view of the fact that the increments with respect to time are inde-
pendent of the defining parameters (**), we obtain

p=9pP= 0¥ =y, =%, =0, =08, = D" =0 (43)

Thus, on the basis of (42) and (43), we find that Equations (41) define
the equations of state for the material medium. The equations are the gene-
ralization of the ordinary equations of the theory of elasticity for the
case where the free energy depends on gradients of the polarization vector,
the magnetization vector, and gradients of the deformation tensor.

If p depends only on 7, Zap, 8apy W% and M "%, and does not depend on
their gradients, then Rma = Na.B = AP — .

In this case, the components of the vector Qdt", Q°dt" = Q°dt~ deter-
mine the influx of heat, while Equations (4#1) reduce to the equations of
state of the theory of elasticity, including eleotirical polarization and
magnetization.

*) Only the assumption of independence of derivatives with respect to time
is essential. Hypotheses sbout the dependence or independence of these coef-
ficients on any derivatives with respect to coordinates 1s not necessary.

##} We can construct models in which derivatives with respect to time may
be linearly dependent on the defining parameters [7].
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For elucidating gyromagnetic effects, it is necessary to take into account
the dependence of the free energy of the vorticity vector ® = !/, rot v. If
the 1list’ of defining parameters S 7) 1s supplemented by the components of
the axial vorticlty vector Y, ( ?, connected with the antisymmetric tensor
©qp, then there appears in the left~hand side of (40) a term of the form
— 0F [ d*. When "@v‘ 18 included in the system of defining parameters (37),
the components ¥ and do'/di* for the multitude of possible processes may
be regarded in Equation (40) as quantities which are independent of the other
parameters in system (37) and of their derivatives with respect to time.

From this it follows that 0F /dw¥ = 0 and (9F/do*)dw’ = 0, since otherwise
the equations dF /4w’ = (0 would represent universal relations between the
defining parameters. On the other hand, 1f relation (42) is retalned, as
well as the other hypotheses about the independence of all coefficients in
Equation (40) from increments in the system of Earameters (37), and also from
w? and dwv/df, then, together with Equatlons (43), we again obtain the
result OF

—dwY = 0

oY

which contradicts the statement of the problem, and, therefore, the basic
hypotheses must be altered in thils case.

In connection with thils, let us investigate an example of the generaliza-
tion of the foregoing theory, based on the folliowing very weak hypotheses
(the resulting relations and conclusions are also applicable if F does not
depend on @Y ).

1. To take into account the irreversible nature of magnetization, we
replace (42) by .
. 1 1 dm® dm®
TdS = - E-Jit + — d*q —— Vo QFdt +dg' = dg"4-dg’ (dq’ =Cop g “gr) (44)

where Cyg are components in a co-moving coordinate system of a symmetric
tensor which depends in general on the defining parameters (37).

2. In Equation (40), which acquires the form
9dT + $*Pe,pdt + D 0¥dt + y, dn® + %, dm® 40 PdV n®* +

dg oF am® dmbP
9 PaV, m* L pBavg “Cay dwY —- ¢ , M _am”
+ B dVm” %P oo CAPTIRPT,

=0 (45)

we assume that the coefficients of ®"dt and of linearly independent incre-
ments of the deflning parameters may depend on the defining parameters and
on the following derlvatives with regpect to time, de/dL dn“/dt and

dm*/dt. (In Equation (45) D, =-—2Q0*  ©'=— 0w, where «, B, y forma
cyclic permutation of the indices 1, 2, 3).

From 1, 2, and Equation (45), 1t follows that (**) 46)

— =0 Pep PP =0, D.otx & —q.qm _ 9F do¥

p=1 a =8y , O+ X - (e —C)- = o
where

B
¥ = Aad®*", ® = %ad* ", C:(‘aﬁddit 9", m:mYaY‘
Ba _ 2B
D=Dp3""= B_Tp__a“v + nt X E-+ mxB (47)

*) For what follows, it 1s essential that in the several arguments of the
free energy ;r the components @Y are included and the tensor components of
the gradlent of the vopticity vector, V,®T., are not included. Due to this
hypothesis, and the hypothesis of linear independence from time derivatives,
terms of the form A[Y“ deY do not appear in the right-hand side of (38).

%#) 8edov, L,I,, Certain problems in the constructlon of new models of con-
t;g:ous media. Contribution to XV Int.Congr.theor. and appl.Mech., Munich,
1 .
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in which time derivatives of vectors are taken wilth respect to a co-moving
coordinate system (for 9 " = const).

From assumptions made, it follows that Equation (46) is equivalent to thé
following three vector equations

D=k 1 o XG, (48)
dm dn
x:kZE_*—&TXGz (49)
dm __
- k3 (% —C) + (x —C) X Gg (50)

where Gi, Gy, G are arbitrary vectors, and the scalars k,, k, and k, are
connected by a single relaticn

f OF dov

m, Fhalw—CP=—F— —— (51)

kli‘”[2 -t~ ko

To eliminate arbitrariness from relations (48) to (50), it is necessary
to fall back on supplementary hypotheses of physical nature.

For example, it may be assumed that Equation (48) 1s the equation of
moments of momentum for the material medium, and that the right-hand side is
equal to the time derivative relative to an inertial system referenced to
the internal moment of momenta X per unit mass. As 1s well known [8], it
may be assumed that K = — ym , where vy 1is a known constant. With this
hypothesls, the scalar k, and the essentlal part of the vector @, are
fixed. The Equation (48) may be regarded as the definition of the nonsym-
metric part of the stress tensor. The polarization equation (49) can be
fixed 1f 1t is assumed that the electric intensity vector B 18 determined
by the free energy, depending on the system (37) through quasi-static rela-
tions; 1t then follows that yq==0, and therefore k,= O, and it may be
assumed that @,= 0 .

After these hypotheses, the scalar x, 1s determined by Equation (51),
while Equation (50), after determination of vector @, , may be regarded ss
a possible alteration or a certaln generallzatlon of the phenomenologlcal
equation of Landeau and Lifshits [1]. This equation was proposed by them for
the theory of magnhetic waves 1in ferromagnetlics, with accelerations and defor-
matlons not taken into account.

In the paper of Vlasov and Ishmukhatov and those of a number of other
authors clted in [9], variational principles, introduction of hypothetical,
appropriate Lagrangian functions, and certain supplementary assumptions, are
used to obtain various systems of kinetic equations and equations of state,
including deformations of the medium.

Further development of the present theory, which 1s based on the equation
of heat flux (40), to the case of models of media with irreversible processes
of a more general kind (including viscosity, temperature gradients and vari-
ous effects) can be carrled out in an analogous way with the help of macro-
scopic theories of the Onsager type.
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