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The macroscopic motion of a material continuous medium, interacting with an 
electromagnetic field, is investigated. The results obtained have a univer- 
sal character, the properties of the medium not being specified In detail. 
Possible interaction of the moving and deforming medlumwlth an electromag- 
netic field is taken into account. This interaction is provoked by the pre- 
sence of electric currents in the medium as well as by the effects of its 
electrical polarization and magnetization. 

Formulas for the ponderomotlve force given by various authors differ in 
nature, and are applicable only to separate, particular cases. This situa- 
tion is related to the posslblllity of different definitions of the momentum 
energy tensor for the electroma@netlc field and to complications in the phys- 
ical problem of the properties of the medium. 

To describe the electromagnetic field in the medium, the following elec- 

tromagnetlc quantities are introduced: 

E, H, D = E - } - 4 ~ P ,  B ~- H J r / ~ M ,  j, p, (1) 

Here, p. is the density of the electric charge distribution, the other 

quantities are the usual ones [1]. These quantities, valid for an inertial 

coordinate system, satisfy the (not closed) system of equations of Maxwell 

[ I ] .  

As is well known [ 2], to write the transformed Maxwell equations for an 

arbitrary, curvillnear, moving coordinate system, it is convenient to make 

use of the tensor form of Maxwell's equations, written in four-dlmensional 

form in pseudo-Euclldean M_Inkowski space. In allof Minkowski space, the met- 

ric may be defined by the quadratic form 

d s  2 =- - -  d z  12 ~ d x  ~2 - -  d x  a2 + c~d t  ~ = g t j d x i d x  j (2) 
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Here, c is the velocity of light. 

The set of real values of the variables x I , x ~ , x S , x 4= t generate a 

pseudo-Euclldean space, defined in an inertial Cartesian reference system. 

As is well known, every transformation 

x ~ = x i (yl, g% y3, g4 = t') (3) 

for which the equality 

ds  2 = - -  dy  12 - -  dy  ~ - -  d y  a3 + cedt '' ---- g i j dy idy  j (4) 

Is fulfilled is linear, and Is called a Lorentz transformation [3]. 

The three-dimensional vectors (I) may be defined in an arbitrary inertial 

coordinate system. To obtain the transformation formulas of the vectors (I) 

in a four-dimensional Lorentz transformation, it is necessary to introduce 

two antlsymmetrlc four-dlmenslonal tensors of second oeder, F and H , 

whose components in inertial Cartesian systems aredeFlned by the matrices (*) 

F = II F , j  II = 

0 B a - - B  ~ cE1 

- - B  3 0 B z cecil 
B 2 - - B  1 0 CEOa 

--cE1 --cE~ --cEa 

t O H a --H = cD1 

- - H  s 0 H 1 c D~ t[ 
H = [I H t j  I] = H ~ __H 1 0 cDa [I 

--cD~ --.cD~ ---cD3 0 I 

(5) 

Maxwell's equations may be written in the forms 

ro t  E -- I 0B d iv  B = 0 or V t F i k  --~ V k F l i  -~ V i F k l  = 0 (6) 
c Ot ' 

ro t  H----4n'T J +  cl 0D0t, d i v D  = 4 n p ~  o, V ~ H i ~ =  4nTIi (7) 

Here 11 = --]'1; I2 = --]'2, I3 = --]'3, I4 = ~)e C2 are the covar ian t  com- 
ponents of the four-dlmenslonal electric current vector. 

For Lorentz transformations and for arbitrary transfor.mations on the spa- 

tial coordinates alone, the vectors ~, E and H, D can be made to corre- 

spond to the antlsymmetric tensors Fij and Hi~ 

*) Here, and in what follows, in general expressions and in summations, 
Latin indices $,J,k,Z... take values 1,2,3,g, while Greek indices a,$,7,.. 
take values 1,2,3. 

Furthermore, in operating with three-dlmensional of four-dlmensional ten- 
sors, raising or lowering of indices in accomplished with the help of the 
metric tensors g*a ~ or gap, defined by the quadratic forms 

d l 2 = g a ~ d x  a dx ~, d s 2 = g i j d x ~ d z i = - - d l 2 ~ 2 g 4 ~  dz ~ d t + g 4 ¢ d t ~  



4 L.I. Sed:v 

The c o n v e r s i o n  f rom t h e  c o m p o n e n t s  o f  t h e s e  v e c t o r s  i n  t h e  x a ,  t s y ~ t e m  

t o  t h e  a n a l o g o u s  c o m p o n e n t s  i n  t h e  y a  ~ s y s t e m  i s  o b t a i n e d  f r o m  g e n e r a l  

r u l e s  f o r  t h e  t r a n s f o r m a t i o n  o f  t h e  - t e n s o r  c o m p o n e n e t s  o f  F , j  and  F ~ : .  

U n l i k e  t h e  v e c t o r s  Z,  D, H, ~ ,  t h e  t e n s o r s  F and  H , t h e i r  c o m p o n e n t s  

FI~ and Hi~, and the tensor equations (6) and (7) have meaning in any non- 

inertial system. Thus, the tensor equations (6) and (7) express invariant 

physical rules, independent of the choice of coordinate system, which in 

inertial coordinate systems are Maxwell's equations. 

In non~uertlal coordinate systems, for example, in a coordinate system 

obtained from a given inertial one by means of a Galilean transformation in 

the Newtonlan sense (without a Lorentz contraction of length and time), the 

transformed coordinates in the matrices (5) can also be regarded as certain 

morrespor~dlng vectors ~*, I* and ~, D*. However, these vectors can be 

regarded as the vectors ~, Z and H, D only in an approximate sense for 

small velocities of a moving system. 

To determine the ponderomotlve forces, it is necessary to introduce the 

momentum energy tensor with components Si! for the electromagnetic field. 

~e general formulas for the components of the four-dimensional ponderomotive 

force in an arbitrary coordinate system have the form 

Fi - -  - -  ~7~S~ ~ (8)  

The laws for the variation of the momentum and energy for the system com- 

posed of the field plus the material medium may be expressed in the form 

V~T~ k = F~ -~ G~, or Vk (r~ k + S~)  = G~ (9) 

Here, G~ are the components of the four-dimensional external force vector 

In many cases, it may be assumed that G~- 0 . The components of the momen- 

tum energy tensor of the medium and the field as one system are represented 

by the sum I~ k = T ~  + Si~ 

In the general case, the momentum energy tensor of the medium, Y~ 

characterizes the physical properties and internal interactions in the medium; 

this tensor also has an electromagnetic nature, since the internal stresses 

in the material medium are determined either by collisions of particles or 

direct interaction of atoms and molecules at distances which are large in 

comparison with the dimensions of the elementary particles of which they are 

composed. As is well k~own, in both cases these microscopic interactions 

are of an electromagnetic nature. According to the appropriate definition 

of the model of the continuous medium, the components ~i~ are connected 

with the metric tensor, with the four-dlmensional velocity vector of points 

of the medium, with the thermodynamic functions of state, and with the char- 

acteristics of the dissipative mechanisms in the medium (*). 

*) The tensor T and its components T~ can be regarded as functlons of 
constant and variable tenaors and scalarparameters, defining the structure, 
physical state, and internal processes for infinitesimal particles. 



Interaction of electromagnetic field and a material continuum 5 

The decomposition of the total momentum energy tensor [{k into the Bum 

Ti~ -~ Si[ for the material medium and the field is directly connected with 

the decomposition of the total electromagnetic force acting on a small por- 

tion of the medium-- a body force and a surface force. The internal surface 

stresses in the medium are defined by the components of the tensor T~, and 

the electromagnetic body forces by the components of the vector F~ = -- VkS~ 

It is evident that, for a unique determination of the tensor [{~, which 

is essential on physical grounds, the tensors Ti~ and Si~ may be determined 

differently, and this is essentially connected with the different methods 

for decomposing a single electromagnetic system into two interacting electro- 

magnetic systems. 

It is essential that after choosing S~ for the field, the tensor Ti~ 

for the material medium be defined with this choice of Si~ taken into account 

in a unique way. 

From what has been said above, it is evident that it is possible to have 

the well-known arbitrariness in the specification of ~i~ ; this circumstance 

has been the basis of many discussions and for the derivation of a variety 

of formulas by different authors [I and 3 to 5] for the ponderomotive forces, 

this question frequently being considered quite without regard to the choice 

of the tensor Ti~ for the material medium. 

Let us investigate the formula for the ponderomotlve force when the ten- 

sor S~k in an arbitrary coordinate system is defined by Minkowski's tensor 

formula 
Si~ t [F~Hm~ t ~.kp Hm~] - 4n -- ~ ~ . _ ~  j (10) 

Minkowski's tensor is not symmetrical in the general case, i.e. 

Making use of Equation (I0) and the conditions of antisymmetry for Fi j  

and H{i , we obtain on the basis of Equations (6) and (7) (*) 

Fi : j-  F ~ I  ~ - -  ~ [ F ~ k ~ H  ~k - -  H~kViF~k]  ( i i )  
c i 6 ~  

The tensor equations (6), (7) and Formulas (i0) and (ii) are valid in any 

moving and general curvillnear coordinate system. 

Together with the tensors F and 

metric tensor p , defined by 

i 
P ---- ~ ( F  - -  H ) ,  [] P , J  I] = 

H , we can introduce another antisym- 

0 M s - - M  l - - c P l  

- - M  3 0 M 1 --cP~ 

M~ - - M  1 0 - - c Ps  

cP1 cPs cPa 0 

(t2) 

*) In deriving (II), use was made of the fact that, on the basis of (6), 

Hmk~lcFra i __ 1 Hrnk~TtFmk 
- - T  
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In an inertial coordinate system, the tensor e is formed with the help 

of the three-dimensional electric polarization vector P (Pl, P2, Ps) and the 

magnetization vector M (M I, M 2, MS). With the help of the tensor P , 

Equation (ll) may be written in the form 

I [ F . ~ p m k  p,,wV~F.~j (t3) F~ = ~- F,. iI  "~ + -~ 

The first term in Equations (ii) and (13) defines the Lorentz force, the 

second term becomes zero in the absence of polarization or magnetization, 

the symbols ~ denote covarlant, four-dimenslonal derivatives. 

If the reference system is inertial, then in connection with the tensors 

F and P we can introduce a system of three-dlmensional vectors (I). In 

an inertial coordinate system, Equation (13) may be written in the form 

t t [ --0E 0P MOB 0M ] (14) 
F ~ =  PeE, + T [j x B ] ~ - - ~ y  r o ~ - - E ~ +  o ~ - - B  o~ 

where the four-dlmensional contravariant force components F a correspond to 

spatial three-di~nslona/ covarlant force components. Equation (14) pre- 

serves its form in going from a Cartesian to a curvillnear spatial coordinate 

system. 

From Equation (13), in an inertial coordinate system, we obtain (*) for 

4=4, 
Op ~ . ~ OM ~ 0 E~ P~-~- B(3 Mr3 

F4c 2 = F4 = E .  j + Et3 -Ti- 5- t~f~ -g~ Ot 2 (15) 

Equations (14) and (15) are directly useful for defining the ponderomotive 

forces by means of the vector system (I) when the material medium is at rest 

or in a state of inertial translational mo¢ion. In the latter case, if the 

vectors |, P, m and M are defined in an inertial reference system tied 

to the body, then in Equation (15) the term • • ~ gives the Joule heat, 

the term E[~OP~/Ot-~ B~OM ~ /0t may be considered to be the macroscopic 

inflow of energy from the field to the body, due to the microscopic mecha- 

nisms of polarization and magnetization of the body, while the quantity 

(Egp [3 -}- BgM ~) is conveniently included in the internal energy of the I/2 

material medium. 

Xt is easy to see that, in Equations (14) in the second term and every- 

where in (15), the components of the vector ]D can be replaced by the com- 

ponents of the vector H . 

If the body is accelerating and is defor.Ling, then Equation (13), which 

is valid in any coordinate system, ~y be used; in particular, this is true 

also for a Latranglan coordlnate system moving with the body, in which the 

*) Equation (15) is obtained as a consequence of the vector identity 

c 

wnlch is valid for varlous definitions of the momentum energy tensor for the 
field, in particular, for that of Minkowskl as well as that of Abraham. 
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three-dlmenslonal velocities of all points of the medium are always equal to 

zero (*). 

Within special relativity theory, space-time forms a four-dlmensional, 

pseudo-Euclldean space; therefore, we can take as inertial reference system 

K a Cartesian coordinate system X I, X 2, X 3, X ~ = Z, for which the metric is 

given by Equation (2). 

In a coordinate system L(~ 1, ~2 ~3 ~4=t^ ) moving with the body, we 

have for the metric 
ds  2 = g ^ i j d ~ i d ~ j ,  g^j (~k) (16) 

Since the coordinates x ~ and gt are taken in one and the same pseudo- 

Euclidean space, there exist functional relations (**) 

X i = Zi (~1, ~2, ~3, t ^) (17) 
which define the law of motion in the continuum under consideration. 

For the components of the four-dimenslonal velocity, we have the following 

l g  eL = 

in system K 

dx=] ¢cgx<Z~ (c3t~ 
ds )a  ~ = t--5/-)a=< \N/as, 

in system L 

u ^~ - -  d ~  - -  O, 
ds 

Formulas 

(18) 
( ) ( (a~"h at 1 Z"2 = ~ t ( ~ - ) )  

U~4 _ _  dr" __ I (19) 
ds ]/Zg ^ 44 

With the help of (17) and (18), we can write for the componentsof g?j 

c2 ,. ,. 

Y=l 

g ~ 4 = g  4 ~ =  - -  a~ ~ at  q -  a~j  ~ ~ 

g a4 = \Or ^ ] q -  c2 = 

For  e v e r y  p o i n t  M(g~,~e , g 3 ) o f  t h e  moving con t inuum Z a t  e v e r y  moment 
of time t, it is possible to choose a proper inertial coordinate system K, 

so that the three-dlmenslonal velocity v of the point M in system K be 

equal to zero. In system K , the acceleration of the point M and the 

velocity of neighboring points of system L are different from zero, in 

general. 

To simplify the derivation of the Invarlant scalar or tensor relations, 

use can be made of the freedom in the choice of system Z at a given moment 

*) Speclflcatlon of the three-dlmensional velocity field as a function of 
time in some fixed coordinate system makesitposslble to individualize polnts 
of the continuum ar~ thus to introduce a Lagrangian coordinate system. 

**) According to (17), the relation between ~,t and ~a,t^ is recipro- 
cally unique in flnlte space. 
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of time t ̂ * and the proper system g for the point M at the moment t~t 

Along with the coordinates ~a and t ~ , we can introduce the Lagrangian 
variables ~D4~ t,^ (in general nonholonomlc), determined by relations 
of the form 

(A) dn a = A a ~  ( ~ a  t ^ ) d ~  ~, dt " ~ - - - B $ ( ~ a ,  t ^ ) d ~  ~ + B ( ~ a ,  t ~ ) d t  ~ 

A ~ where ~ and B~ are components of some tensor and vector, for which 
[A .~ [ :# :O  and B ~ G , In the case of holonomic coordinates, the conditions 
of integrability are fulfilled, and therefore relations ~) reduce to finite 
relations 

(B) ~ = ~  (~ ,  ~2, ~8), t , ~ = t  ~ ( ~ ,  t ^) 

Correspo~.i~gg~ to the vector base a=~, ~ i n  the variables g~ is the 
vector base a~ , ~ in the quasi-coordlnates ~. It is evident that these 
bases are related by Formulas 

^ - -  A~a aa '^  + B ~  "^, aa ~ : Ba~ '^ 

If t ̂  and t '^ are defined as proper times in systems g~ and ~, 
respectively, then the second of relations (B) has the form 

(C) t "  = t ^ + / (~ ,  ~' ,  ~a) at B = t 

The function ~(ga} gives t h e  reference origin for the time on different 
world lines; if / - const , then B8 " 0 . 

In nor_holonomic coordinates, relations (C) are replaced by Equation 

d t ' ~ = d t ~ + B ~ d ~  

In both holonomic and nonholonomic cases, the quadratic form g~d~ d~ 
defines a three-dimenslonal metric, which is non-Euclldean in general. 

s Ince 

The choice of L and K may be made so that 

x ~ - = ~ "  to, t ~ = t  ~*, V l - - ~ d t  - :  d t  ^ (21)  

This means that, for t^= t ̂ *, in all three-dimenslonal space, the spatial 

coordinates ga coincide wlth Cartesian coordinates x c in K , and that 4t 

is the increment of proper time In K , while dt ̂  is the infinitesimal 

increment of proper time at points of system L • At point M we have u = 0 

and, consequently, the increments of proper time in K and in L are iden- 

tical for point M • 

From Equations (21) it follows that in all three-dimensional space the 

equations 

a f t = 5  a ,  = 0 ,  = v %  - -  t~ ~ at / ~  a ~  ~ 1 / t  v'/¢' 
a r e  v a l i d  f o r  t A- t ~*, and i n  a d d i t i o n ,  a t  p o i n t  ~ , t h e  f o l l o w i n g  equa -  

t i o n s  are valid; 

o, =I =o 
at = ~at / ~  ' a~a~----~ 

oax~ o , ~  av ~ av ~ a 'x  ~ a~x " av ~ (23) 

a t  ~ a t a,t 
a t e , / ~  = at^ t fCz_D_/c s = O, a t - - -  ^ a~, ~ ---- 0 
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Y~ : v a denotes components in system K of the three-dimensional velocity 

t^= t ̂*, Equations 

Vo~ 
^ = c ~ ( 2 4 )  g 44 

Spatial coordinates in the inertial system K and in the nonlnertlal 

system L coincide only for t^= t^*; at subsequent times, accelerations 

and deformations cause coordinate lines in system L to displace and deform 

relative to system K . 

We shall denote by ai, ~i and a^i,a ̂ i, respectively, the covariant and 

contravariant base vectors in systems K and L • 

Let us consider an arbitrary tensor field Y • 

N = N K ~ .  aia~a ~ . . . .  : N ~ i ~ . . .  a ^ i a  ^ j a  ^ k . . .  

and the gradient of the tensor N • 

g r a d N  = ONaz = ONa^t = V ^ z N ~ . . . a ^ i a ^ j o ^ k  • • • a ~  
Ox t O~ l 

For g Equa- 

tions 

In going from point g to other points, or for t^~ t ̂*, Equations (25) 

may be violated. 

In comparing various physical equations in their components, use can be 
made of the coordinate systems L and K • In equations containing deriva- 
tives of components of tensors with respect to coordinates or to time, use 
can be made of Equation (95), and the derivatives for different components 
in different systems applied, depending in which system the components under 
consideration are specified. 

In mumber of cases, It is convenient to specify and consider the components 
of the momentum energy tensor of the material medium in a co-moving coordi- 
nate system L , while at the same time giving the components of the momen- 
tum energy tensor ~k of the electromagnetic field in an inertial coordinate 
system K , 

In making use of the proper system K , the three-dimensional vector cha- 
racteristics of the electromagnetic field and the corresponding equations of 
Maxwell in vector form can be introduced. At the same time, the three- 
dimensional vectors introduced for system K can be considered in the spa- 
tial coordinates of L • Thus, the system K n~y be regarded as a supple- 
mentary method for determining the ordinary vector characteristics of the 
electro,magnetic field. If, for the electromagnetic field, we limit ourselves 
to the tensors F, H, P and S , then all the tensors may be investigated 
only in s co-movlng coordinate system. In this case, introduction of the 
inertial system K may be essential for determining the components of the 
tensor g~. (Equations ~20)) and of the four-dimensional velocity vector. 
Both metnoas are essential, generally speaking, for determining the momentum 
energy tensors of the electromagnetic field and the material medium. 

t'= t ̂ *, due to conditions (22) and (23), we have at point 

0 i = D i and 8i 8^*, therefore 

c3 ,~ l . . .  
(25) 

vector of a point of the medium. 

From (20) and (22) it follows that, for 

g ^ ~ =  ( a 4 = ~ ) '  g 4 ~ =  

are valid, with g ~ 4 o c  : 0 at point g . 
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For the ponderomotlve forces and for the inflow of energy:in the general 

case of motion of a deformable medium, use can be made of Equations (14) and 

(15), in which the components of the vectors Ea,Ba,pa,A~ are defined in a 

spatial coordinate system of the inertial system K • In Equations (14) and 

(15), coordinate lines in system K may be taken to be curvilinear. In 

us~ the vectors ~2, V~<, B^~<, ~ <  in a co-movlng ooordlnat~ 
system L , Equations (14) preserve their form (*). 

If the quantities E'=, p~a B^= ' ~//"a are introduced in Equation (15), 

then it is necessary to take into account Equations [6] 

( o < )  / , . . . . .  

(OM% ( °M~I . ~.u ~ (~; + o~.~) 
Ot "~a =- \ - -Ot~- / :a  

(26) 

Here e^~ and ~^a~---112(Ov~la~8--Ov~lO~ a) are the components of the 

three-dimensional rate of deformation and vorticity tensors, defined for a 

three-dlmensional velocity vector V of points travelling with system L 

relative to the corresponding proper system K • 

On the basis of (26), Equation (16) takes the form 

F 4 = - - V k S ~  = E . j @ ( E  ^ ~ p ^ ~ - ~ - B  ^ ~ M  ^") ( e ~ + e ^ ~ ) +  

OP ̂ ~ OM ^~ 0 E ^ $ P ^ ~  + B ^ ~ M  ^~ 
+ E %  O-g-i-z- + B ^ s  ot ^ ot ~ 2 (27) 

The scalar energy equation for the system consisting of the material 

medium and the field in an arbitrary coordinate system may be written in the 

form i -k i -k 
u V k S i .  u~G~ u VkTi.  + = = d ' q ~  cdt ^ (28) 

Here, d*~/odt  ^ is the external, macroscopic inflow of energy into unit 

area per unit proper time, due to interactions with other bodies not inclu- 

ded in the tensors Ti~ and Si~ ~ in many cases we can usually assume that 

d*q/dt^= 0 . 

In Equation (28) , in accordance with (19), (24) and (25), the term 

~^aT4 a is taken in a co-movlng coordinate system L , and the terms ~Z~ 

and V:T44----(~T44/#t)xa :(~T44/~¢^)~ in the inertial, proper coordinate 

system K ; thus we obtain 

OT4 4 
Ot ~ ~ ~ T 2  = F4 + d*q / dt ~ (29) 

where F ,  i s  d e f i n e d  by Equa t ion  (27) .  

*) This derivation follows from the equations for transforming the vectors 
(1) when the system K is Intr0duced at each point of the medium and from 
Equations F;~0. Equation (14) is preserved also for transformations of 

the form ~=~a(~1, ~, ks) and t '^ ~---t ̂. 
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To transform and evaluate the left-hand side of (29), we note that, at 

the point M , for which u a - O at 

result in Equations 

Og^~v - -  O, Og~4;~ 

O~ ~ O~ ~ 

Ot / ,  

t, ̂ -  t ^ * ,  Equations (20), (22) and ( 2 3 )  

__. Or[3 0g~44 

0 ~  , 0 ~  

O g ~ 4  Ov a 

- 0 (30) 

Og ~4 
Ot ~ Ot ~ ' Ot" 

--0 

Using (30), we find that, for Cheistoffel symbols, 

P 5~ = ~ f g A .  ÷ 
E q u a t i o n s  

(3t) 

a r e  v a l i d .  On t h e  b a s i s  o f  { 3 1 ) ,  we h a v e  

= ~ 0 ~  ~ +T~iaF ~ i~ -TAi~F  ~ ~4=^J divQ -r d ivv- -p=~  °~ ~ 

a j~ 
( q = G %  (32) 

F u r t h e r  r e a r r a n g e m e n t  o f  E q u a t i o n  ( 2 . 9 )  c a n  be  a c c o m p l i s h e d  by  u s i n g  

E q u a t i o n  do 
dt ~ -+- p d iv  v = 0 (33)  

where p is the density, determined in the co-moving coordinate system from 

the relation 
P ¢% = dmo (dxo - V ~  d~ d~ d~3, g* (~ ,  t ' )  - -  I G ~  [) 

Here, d% i s  the substantial volume in the co-movlng system, dm o is the 

rest mass, gm~ are the components of the three-dimenslonal metric tensor. 

now 1 (E~p~ + B~M~ ) __ o U  (34)  We define T~ 4 ~ -  2 -  

W i t h  (27), (32), (33) and (34), we can write (29) in the form 

0--{ x -  ~ p 2 

Oz~ ̂ ~  Om ^13 t i div Q + t (d*q / d t  ~) (35) 

w h e r e  g ~  ~ p a  / p , m a  ~ i a / P ,  a r e  t h e  c o m p o n e n t s  o f  t h e  t h r e e - d i m e n s i o n a l  

vectors of the moments of polarization and magnetization, per unit rest mass. 

Equation (35) is called the equation of heat influx, and is valid for 

irreversible as well as reversible processes. The quantity U can be 

regarded, in a co-movlng reference system, as the local specific internal 

energy per unit rest mass of the material medium. In the general case, the 

full internal energy of finite volumes of the medium, due to internal macro- 

scopic interactions in the material medium, cannot be represented in the 

form of an integral of U • The specific internal energy U , the specific 
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entropy S and the absolute temperature T (*), defined above in a co- 

moving coordinate system, may be regarded as scalar quantities, Just as 

dmo ~ Pd~o Together with the quantity U , it is convenient to use. the 

specific free energy F , defined by Equation F - U - TS . 

With the help of the function F , Equation (35) can be rewritten in the 

form 

( + (dF)~ = - -  S dT + 

4- E~:~ ~ + B~m ~] (e~ 4- o~)  dt ~ 4- 

^ t d i v Q d t  ~, 4- 1 + E ~ d n ^ ~ 4 - B ^ ~ d m ^ ~ - - - ~  -~E. j d t A + ~ d * q - - T d S  (36) 

In what follows, we shall consider all the quantities appearing in the 

heat influx equation (36) as three-dimenslonal sc_R1~_~s,vectors, and tensors. 

The vectors B and ~ are taken in the proper coordinate system K , 

and therefore the energy flux p-lZ.S represents the Joule heat. 

The energy flux -- p-~div Qdt ̂  canberepresentedlntheform ofasumofinflow 

of heat energj and nonheat energy; this inflow is expressed as the flux of 

the vector Qdt A == T-~%~= dl on the boundary of a small particle. It is 
A. 4 

evident that the vector Q , Just as the components T 4-, can depend only 

on the same defining quantities as the momentum energy tensor T^i!. 

Energy flux which is independent of the momentum energy tensor, for exam- 

ple, radiant energy flux, is included in the term p-~d'q • 

Equation (36) is satisfied for all possible processes in the medium 
occurring due to the action of arbitrary external forces, for arbltrary_. 
changes of the determining parameters. Making use of this, ~quat 6ion ~3 ) 
may be used as the basis for deriving the equations of state and the kinetic 
equations which are satisfied for any process. These physical relations can 
be obtained when the free energy F and the entrop~ increment dS= d.S+d~S 
are given as functions of the specified quantities t d,S is the inflow of 
entropy across the surface bounding the volume of a small particle). 

In constructing specific models of material media, it is quite consistent 
to assume the absence of connecting relations between geometric or kinematic 
quantities, differential or any other relations, different from their direct 
definition. An example of-such a connection could be the condition of incom- 
pressibility, which, however, can be applied in some cases. The existence 
of supplementary relations leads to restrictions in the laws of motion which 
are independent of external conditions or of the effect of external body or 
surface forces on the boundaries of finite volumes or small particles of the 
medium. 

We shall investigate Equation (36) under the assumption that the free 

energy F can be considered to be a function of the following parameters: 

T, gO,,~, g^~,;3, n ~ ,  m ,^=, 27~n ^=, V~6 m~', Og~v 0g~v (37) 
o~ ' 0 ~  t3 

*) In what follows, we shall consider reversible processes or only those 
irreversible processes for which the concept of temperature and free energy 
is meaningful. 
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where gO is the three-dlmensional metric tensor of some initial state. 

Since '~ ~g my = 0, and 

~gO=~ __ O~ ~ 

therefore, in the arguments of the function F , we can take Og^a.~ / O~ 8 
as variable quantities with time and gO and ag°ay / 0~ as constants. We 

assume, in addition, 

Q~dt ̂  = R^'~.d~ ^= + N^'~.dm ^= + A^~=~dg^=v + Q^Pdt ~ (38) 
where the coefficients R ^ ~ . ,  N~B., A ^~v  and ~^~ depend on the para- 

meters (37) and, in the general case, on certain other quantities (*). 

We can aupplement system (37) with other parameters and include certain 

derivatives with respect to time. In these, more general cases, the develop- 

ment of a subsequent theory Is also possible, with complications. 

It is not difficult to verify Equations 

d ~  n ~ = V~dn  ~ + n ~ d p ~  

where 

l ( Ogv~ Ogfl___~ d og-~s ) (39) d r ~  = - r ~ g  =~ d g ~  + 2- g ~  d - ~ -  + d oV ' o ~  

O~ ~ d g ~ F ~ -  dg~F=~ 

With Equations (37) to (39), Equation (36) can be written in the form 

q~dr +$=~e=~dt ~ + ~=~m~dt  ~ + x=dn = -5 ×~dm ~ + O = ~ d ' ~ t = +  (40) 

+ ~=~ d ~ m  ~ -5 ~ d  Og~ 1 ~ dt ~ -5 -~-. j dt ~ 4- d*q _ T dS = 0 a~ ~ p , p 

where (p, ~ ,  Q=~, X=, ~ ,  0~., ~ and (D ~ a re  de f ined  by ~ormulas 
(41) 

o-~ 2 o ~ - -  y ?  o~ ~ _° V - -  o ( o ~ /  o¢,l ~ S + 

_]_~_t (E.tpv -5 B v M  v) g*=O ~ ~1 (E=pt~ .+ E~p= -5 B=M ~ _+_ BOM =) + 

i _ Rx~) (R=x R~=) -4"- ~- ~ ,  [( Rt~x n~ -5 =-tt~ -5 (R t~= -5 R =~) n~] + 
{ 

-k- 2- ~x [(N ~' - - N  ~'t~) m = + (N =x - -  N z~) m~ -5 (N ~= -5 N =¢~) m )' ] -- 

*) In what follows, the components of all vectors and tenaors are taken in 
a co-moving system of coordinates. Pot simplicity, the symbol - , denoting 
components in the co-moving system, is dropped. Further arguments and equa- 
tions will be simplified if, instead of the system of defining parameters 
(37), we take the system T, g°ij' gij' ~ '  'na' ~o ~ ,  ~o m ~, ~o ga~ 

Here, V~ is the symbol for the qovariant derivative In,he three-dimen~ 
space of the initial state. Below, the case of saturated magnetization, for 
which Im[ - const , is not considered. Inclusion of saturation will not 
introduce essential difficulties. 
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p ~  _ p ~  + E ~ P  ~ _ E ~ p  ~ + B ~ M  ~ _ B ~ M  ~ =2p~ ~ 

A~V= 9 0 ( O g . v / o ~ o  ) 4 ' ' ' -{- 

+ [(NV~ _ N~V) m ~ + (N=~ _ ~ a )  my + (N~ + N~V) m#] 9(1)~ ~ 
4 

The t e n s o r  ~ i s  s y ~ n e t r l c  and the t e n s o r  Q ~  i s  a n t l s y m m e t r t c .  The 

components A 0=v and (1)~ ~v are syrmetrlc wlth respect to the last two indi- 

ces. 

If it is assumed that the inflows of energy --p-l~78~dt ^ and 0-1d*q 

correspond to the inflow of heat energy, then for reversible and for certain 

irreversible processes (for example, with heat conductivity and radiation 

included), Equation 

E ' j  d t -~-  ~ d ' q - -  ~ V ~ d t = d q  (~ (42) T d S = - 7  -~-- 
will be satisfied. 

If, moreover, it is admitted that the quantities ~, ~a~, ~, ~, %~, 0a~, 

~ and (1)~av, defined by Equations~(~l), do not depend on derivatives with 

respect to time (*) or on the defining parameters ( 37 ), then, from Equstlon 

(40), and invlewofthe fact that the increments with respect to time are inde- 

pendent of the defining parameters (**), we obtain 

= % ~ =  ~ = ~ = × ~ = O .  ~ = ~  =(13~ ~ =  0 (43) 

Thus, on the basis of (~2) and (~3) ,  we find that Equations (~1) define 

the equatlonsof state for the material medium. The equations are the gene- 

ralization of the ordinary equations of the theory of elasticity for the 

case where the free energy depends on gradients of the polarization vector, 

the magnetization vector, and gradients of the deformation tensor. 

If F depends only on T, g2~, g~,  ~ ^~ and m~, and does not depend on 

their gradients, then .Ra ~ -~- N ~  ~ ~ A ~ ~-~ 0. 

I n  this  case ,  the  components o f  the v e c t o r  Q d t  ~ , Q ~ d t  ^ = ~ d t  ~ d e t e r -  

mine the influx of heat, while Equations (41) reduce to the equations of 

s t a t e  o f  t h e  t h e o r y  o f  e l a s t i c i t y ,  i n c l u d i n g  e l e c t r i c a l  p o l a r i z a t i o n  and 

m ~ t i z a t i o n .  

*)  ~ ¥  t h e  u s ~ £ o n  o f  ~ @ p e ~ e n ~ e  o f  d e r t y a t i v e s  w i t h  r e s p e c t  t o  t i m e  
i s  e s a e n t ~ L l , ~ t ~ M s  a b o u t  t l ~ e d e p e m d e n c e  o r  ~ e p e n d e n ~ e  o f  t h e s e  c o e f -  
f i c i e n t s  o m a r 4 ~ d e r l v ~ t i v e e  w i t h  r e s p e c t  t o  c o o r d i n a t e s  i s  n o t  n e c e s s a r y .  
**)  We can  c o n s t r u c t  m o d e l s  i n  w h i c h  d e r i v a t i v e s  w i t h  r e s p e c t  t o  t i m e  may 
be  l i n e a r l y  d e p e n d e n t  on  t h e  d e f i n i n g  p a r a m e t e r s  [ 7 ] .  
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For elucidating gyromagnetic effects, it is necessary to take into account 
the dependence of the free energy of the vorticity vector {o ~ I/2 rot v. If 
the list of defining parameters (37) is supplemented by the components of 
the axial vorticlty vector ov (*), connected with the antisymmetric tensor 
~P, then there appears in the left-hand side of (40) a term of the form 
-- aF / nov. When ov ~ is included in the system of defining parameters (37), 
the components ~V and d(0 v /dt ~ for the multitude of possible processes may 
be regarded in Equation (40) as quantities which are independent of the other 
parameters in system (37) a~d of their derivatives with respect to time. 
From this it follows that OF/no v~ 0 and (aF/ao~v)d(oV-~-O, since otherwise 
the equations aF/a(o v ~ 0 would represent universal relations between the 
defining parameters. On the other hand, if relation (42) is retained, as 
well as the other hypotheses about the independence of all coefficients in 
Equation (40) from increments in the system of parameters (37), and also from 
o~V and d(ov/dt, then, together with Equations (~3), we again obtain the 
result 

OF 

Oo)'v 

which contradicts the statement of the problem, and, therefore, the basic 
hypotheses must be altered in this case. 

In connection with this, let us investigate an example of the generaliza- 
tion of the foregoing theory, based on the following very weak hypotheses 
(the resulting relations and conclusions are also applicable if F does not 
depend on (0v). 

1. To take into account the irreversible nature of magnetization, we 
replace (42) by 

1 t ( dm~ dml~ I 
T d S = - ~ E . j d t  -~- - ~ d * q ~ - ~ V ~ g d t @ d q ' - = d q ( e ) - [ - d q "  dq'-~c~3 dt t i t ]  (44) 

where c~ are components in a co-moving coordinate system of a symmetric 
tensor which depends in general on the defining parameters (37). 

2. In Equation (40), which acquires the form 

Oga. ~ OF drn ~ dm (3 
• 0 ~  06) v dt  dt  

we a s s u m e  t h a t  t h e  c o e f f i c i e n t s  o f  o)Vdt a n d  o f  l i n e a r l y  i n d e p e n d e n t  i n c r e -  
m e n t s  o f  t h e  d e f i n i n g  p a r a m e t e r s  m a y  d e p e n d  o n  t h e  d e f i n l r ~  p a r a m e t e r s  a n d  
o n  t h e  f o l l o w i n g  d e r i v a t i v e s  w i t h  r e s p e c t  t o  t i m e ,  do) ~/d t ,  dg~/dt and 
dm, a/dt. (:L~ E q u a t i o n  ( ~ 4 5 ) D r = - - 2 ~  ~m, o ) ' ~ - - - - - c 0 a ~ ,  w h e r e  a ,  f~, ¥ f o r m  a 
cyclic permutation of the indic~s l, 2, 3). 

From I, 2, and Equation (45), it follows that (**) 

d~ dm OF do) v _  0 
(p : t~ ~ = Oa~ = t~a ~ : (I) (~av : O, D - t o  -~- )~. ~ -]- (× - -  C) .  dt 0o)¥ dt 

where 

dm ~ 
~- ~ ; ) z :  ~ ,  :~ ~ ×~3 ~ ~, C --~ co~ ~ ~ S ̂  % ma ~ o v S v  ^ 

D ~ D.~;~ ^ v _ pt3O~ _ p~t3 s ̂ ; -+- zt xE+ m X B  (47) 
P 

*) For what follows, it is essential that in the several arguments of the 
free energy F the components o ~ are included and the tensor components of 
the gradient of the vo~ticity vector, ~7ao7., are not included. Due to this 
hypothesis, and the hypothesis of linear independence from time derivatives, 
termB of the form My ~ d~ v do not appear in the right-hand side of (38). 

**) Sedov, L.I., Certalnproblems in the construction of new models of con- 
tinuous media. Contribution to XV Int.Congr.theor. and appl.Mech., Munich, 
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in whlch time derivatives of vectors are taken with respect to a co-moving 
coordinate system (for 9 ^ = const). 

From assumptions made, it follows that Equation (46) is equivalent to th6 
following three vector equations 

D : klO -~--0 ×G1 (48) 
d~ d~ 

X = k2 ~(- + ~/T x G2 (49) 

d m_mdt := ks (u - -  C) -~ (u - -  C) × GS (50) 

where Gi, G2, Ga are arbitrary vectors, and the scalars k,, k 2 and ka are 
connected by a single relation 

i dx  2 k ~ l o l  ~-~k~ ~ -  @k3[x__C[2  = OF don't 
0 ~  dt (5t) 

To eliminate arbitrariness from relations (48) to (50), it is necessary 
to fall back on supplementary hypotheses of physical nature. 

For example, it may be assumed that Equation (~8) is the equation of 
moments of momentum for the ~terlal medium, and that the right-hand side is 
equal to the time derivative relative to an inertial system referenced to 
the internal mce~A~t of momenta K per unit ~ss. As is well knc~m [8], it 

be assumed that X - -- 7B , where 7 is a known constant. With this 
hypothesis, the scalar k~ and the essential part of the vector a z are 
fixed. The Equation (~8) may be regarded as the definition of the nonsym- 
metric part of the stress tensor. The polarization equation (~9) can be 
fixed if it is assumed that the electric intensity vector • is determined 
by the free energy, depending on the system (37) through quasl-statlc rela- 
tions; it then follows that ~a~---0, and therefore k~= O, and it may be 
assumed that Qu" 0 . 

After these h~VPotheses, the scalar ks is determined by Equation (51), 
while Equation (50), after determination of vector ~ , may be regarded as 
a possible alteration or a certain generalization of the phenomenological 
equation of Landau and Lifshlts [I]. This equation was proposed by them for 
the theory of magnetic waves in ferromagnetics, with accmlerations and defor- 
mations not taken into account. 

In the paper of Vlasov and Ishmukhatov and those of a number of other 
authors cited in [ 9], varlatloual principles, introduction of hypothetical, 
appropriate LagranElan functions, and certain supplementary assumptions, are 
used to obtain various systems of kinetic equations and equations of state, 
including deformations of the medium. 

Further development of the present theory, which is based on the equation 
of heat flux (~0), to the case of models of media with irreversible processes 
of a more general kind (including viscosity, temperature g~adlents and vari- 
ous effectsJ can be carried out in an analogous way with the help of macro- 
scopic theories of the Onsager type. 
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